Adaptive Nonparametric Regression with Conditional Heteroskedasticity

نویسندگان

  • Sainan JIN
  • Liangjun SU
  • Sainan Jin
  • Liangjun Su
  • Zhijie Xiao
چکیده

In this paper, we study adaptive nonparametric regression estimation in the presence of conditional heteroskedastic error terms. We demonstrate that both the conditional mean and conditional variance functions in a nonparametric regression model can be estimated adaptively based on the local profile likelihood principle. Both the one-step Newton-Raphson estimator and the local profile likelihood estimator are investigated. We show that the proposed estimators are asymptotically equivalent to the infeasible local likelihood estimators (e.g., Aerts and Claeskens, 1997), which require knowledge of the error distribution. Simulation evidence suggests that when the distribution of the error term is different from Gaussian, the adaptive estimators of both conditional mean and variance can often achieve significant efficiency over the conventional local polynomial estimators. JEL classifications: C13, C14

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonparametric Goodness-of-fit-based Test for Conditional Heteroskedasticity∗

In this paper we propose a nonparametric test for conditional heteroskedasticity based on a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for classical linear regression models, the nonparametric R2 is obtained for the local polynomial regression of the residuals from a parametric regression on some covariates. It is close to 0 under the null hypothesis of c...

متن کامل

Local Polynomial Regression and Its Applicationsin

Nonparametric regression estimates a conditional expectation of a response given a predictor variable without requiring parametric assumptions about this conditional expectation. There are many methods of nonparametric regression including kernel estimation, smoothing splines, regression splines, and orthogonal series. Local regression ts parametric models locally by using kernel weights. Local...

متن کامل

EFFICIENT ESTIMATION OF GENERALIZEDADDITIVE NONPARAMETRIC REGRESSIONMODELSOliver

We deene new procedures for estimating generalized additive nonparametric regression models that are more eecient than the Linton and HHrdle (1996) integration-based method and achieve certain oracle bounds. We consider criterion functions based on the Linear Exponential Family, which includes many important special cases. We also consider the extension to multiple parameter models like the Gam...

متن کامل

AN ADAPTIVE, RATE-OPTIMAL TEST OF LINEARITY FOR MEDIAN REGRESSION MODELS by

This paper is concerned with testing the hypothesis that a conditional median function is linear against a nonparametric alternative with unknown smoothness. We develop a test that is uniformly consistent against alternatives whose distance from the linear model converges to zero at the fastest possible rate. The test accommodates conditional heteroskedasticity of unknown form. The numerical pe...

متن کامل

Semiparametric IV Estimation and Model Selection with Weak Instruments and Heteroskedasticity

This paper proposes a new two stage least squares (2SLS) estimator which is consistent and asymptotically normal in the presence of many weak instruments and heteroskedasticity. The first stage of the estimator consists of two components: first, an adaptive absolute shrinkage and selection operator (LASSO) that selects the instruments; and second, an OLS regression with the selected regressors....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014